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ABSTRACT

There are many fluid flows where the onset of transition can be caused by dif-

ferent instability mechanisms which compete among themselves. Here we consider

the interaction of two types of instability mode (at an asymptotically large Reynolds

number) which can occur in the flow above a rotating disc. In particular, we exam-

ine the interaction between lower-branch Tollmien-Schlichting (TS) waves and the

upper-branch, stationary, inviscid crossflow vortex whose asymptotic structure has

been described by Hall (1986). This problem is studied in the context of investi-

gating the effect of the vortex on the stability characteristics of a small TS wave.

Essentially, it is found that the primary effect is felt through the modification to

the mean flow induced by the presence of the vortex. Initially, the TS wave is taken

to be linear in character and we show (for the cases of both a linear and a nonlinear

stationary vortex) that the vortex can exhibit both stabilizing and destabilizing

effects on the TS wave and the nature of this influence is wholly dependent upon

the orientation of this latter instability. Further, we examine the problem with a

larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in

its own right. An amplitude equation for the evolution of the TS wave is derived

which admits solutions corresponding to finite amplitude, stable, traveling waves.

* This research was supported by the National Aeronautics and Space Adminis-

tration under NASA Contract No. NAS1-18605 while the author was in residence

at ICASE, NASA Langley Research Center, Hampton, VA 23665.





1. Introduction

Many studies concerned with the instability of three-dimensional boundary

layers have been motivated by a desire to understand the phenomenon of transition

to turbulence in fluid flows. Here we are concerned with a self-consistent asymptotic

description of the interaction of stationary cross-flow vortices and lower-branch

Tollmien-Schlichting waves (hereafter referred to as TS waves) in the boundary

layer of the flow induced by a rotating disc. This particular flow is susceptible to an

instability similar to that which occurs in the boundary layer of flows over a swept

wing; a situation which has practical relevance to the development of Laminar Flow

Control wings. Further, there is an exact solution of the Navier-Stokes equations

which describes the rotating disc flow. This makes the study of this rotating disc

problem particularly suitable for a theoretical analysis of the interaction of the

vortices and the TS waves.

We will concentrate on the description of the interaction which occurs in flows

at an asymptotically large Reynolds number (which is based upon the angular

velocity of the disc, a typical lengthscale of the problem and the kinematic viscosity

of the flow). The lower-branch TS waves are then described by a classical interactive

triple deck structure, the key elements of which are reviewed by Messiter (1979),

Stewartson (1981) and Smith (1982). The TS waves, which are travelling modes,

have a wavelength much greater than the boundary layer thickness and a small

wavespeed. The structure of these disturbances is outlined in Section 3.

The crossflow vortex instability structure can occur only in three-dimensional

boundary layers and was first examined both theoretically and experimentally by

Gregory et al (1955). The stationary vortex mechanism appears when a direction

for the disturbance is chosen such that the effective basic velocity profile contains

an infiexion point at the same location at which it vanishes. Gregory et al used

the china clay technique to show that for the rotating disc flow the vortex insta-

bility takes the form of a regularly spaced pattern of equiangular spiral vortices

which is stationary relative to the disc. Stuart (in Gregory et al), using inviscid

theory, predicted the number of vortices which would be observed in experiment as

approximately four times greater than that actually seen, although his calculation

of an angle of 13 ° between the axes of the vortices and the radius vector on the

disc was in excellent agreement with the experiments. The difference between the
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experimental observationsand the results of the inviscid analysishasbeenshownto

be due to viscouseffects. Malik (1986a)calculated the neutral curve for stationary

disturbances and found a secondmode. Earlier, Federovet al (1976) had observed

experimentally this secondmode,which, as in the inviscid case,appeared asa pat-

tern of spiral vortices. The number of thesevortices wasseento be between14and

16 and thesehad axes inclined at anglesof approximately 20° to the radius vector.

Hall (1986) has given a linear, asymptotic account of the inviscid mode found

by Gregory et al (1955) for large Reynolds numbers. This work has been extended

by Gajjar (1989) to examine nonlinear effects. Hall (1986) also elucidated a triple-

deck type structure for the second type of stationary vortex which corresponds to

an effective velocity profile with zero shear stress at the wall. This problem has

also been studied using a weakly nonlinear approach by MacKerrell (1987, 1988).

Further, Bassom & Gajjar (1988) have examined the properties of a non-stationary

version of the crossflow instability.

Much work has been performed in relation to the important problem of the

interaction of the interaction of TS waves with GSrtler vortices (an instability as-

sociated with flows over curved surfaces). See, for example, Nayfeh (1981), Malik

(1986b), Bennett & Hall (1988), Bennett et. al. (1988), Hall & Smith (1988,

1989a, b), Daudpota et al (1988), Bassom & Hall (1988) and the references therein.

However, relatively little attention has been paid to the type of crossflow-TS in-

teraction examined in this paper, although, in particular, we refer to the work of

Reed (1984, 1985) who investigated this interaction and found that the crossflow

vortices lead to a 'double exponential' growth in the TS waves. A linear analysis of

the problem was used and the vortex was permitted to grow exponentially although

no account was made for nonlinear effects. The vortex was allowed to force a TS

wave of appropriate wavelength such that the growth rate of the latter mode was

proportional to the amplitude of the vortex. The amplitude of the TS wave then

grows like the exponential of an exponential. In the aforementioned papers Reed

also examines the question of interaction between crossflow vortices of particular

wavelengths. However, in both of these problems, the approach adopted ignores

the crucial fact that for a completely rational description of the importance of the

interaction process, each of the instability modes involved should be neutrally sta-

ble at leading order in their own rights. Otherwise, the vortex growth due to any



interaction processis no larger than the growth experiencedin its' absenceand the

importance of the role of the interaction is impossible to assess.For this reason,

together with the neglect of nonlinear terms in her subsequentanalysis, it must

be concluded that the relevanceof Reed's work to practical situations is at best
doubtful.

The primary motivation for the presentinvestigation stemsfrom the questionof

how the presenceof an inv}scidstationary vortex affects the stability characteristics

of the TS wave. We emphasize that at this stage we do not concern ourselves

with calculations for the growth rates of the respective instabilities. Firstly, we

consider the problem of a small crossflow vortex which has an asymptotic structure

as described in Hall (1986). The vortex has a critical layer structure in the vicinity

of the inflexion point of the basic flow and this critical layer is linear in character.

The vortex then has a very small TS wave superimposed upon it and the effect

of the vortex on the neutral stability properties of the TS wave is obtained. We

find that the vortex can stabilise or destabilise the TS wave depending upon the

orientation of the latter mode. The amplitude of the TS wave is then allowed to

increase to the point at which it becomes nonlinear in its own right and amplitude

equations for the evolution of the TS wave are obtained.

In addition, the problem of the interaction between a stronger, nonlinear vortex

and a smalt TS wave is considered. It is concluded that for both the linear and the

nonlinear vortex problems the effect of the vortex on the stability of the TS wave

is felt primarily through the correction to the effective mean flow induced by the

presence of the vortex.

The procedure in the remainder of the paper is follows. In Section 2 we formu-

late the problem and indicate the basic disturbance structure for the linear crossflow

vortex. We impose a small TS disturbance on this configuration in Section 3 and

we examine the neutral stability characteristics of this wave in the presence of the

vortex. The TS wave is increased in size to become nonlinear in Section 4 and the

problem with a larger, now nonlinear, vortex is considered in Section 5. Finally, we

draw some conclusions in Section 6.



2. Formulation of the problem and the linear ,cortex structure

We consider the case in which the disc rotates about the z-axis with angular

velocity fl. Relative to cylindrical polar axes (r,R,z) which rotate with the disc

and in which r and z have been made dimensionless with respect to some reference

lengthscale l, the continuity and Navier-Stokes equations for an incompressible fluid

in the region z __ 0 are

V.u = 0, (2.1a)

On
vqt + (U'V) u + 2 (f] A U) + aA (fl A r) -- --1VP +//V2u" (2.1b)

P

Here u is the velocity vector, r is the coordinate vector, p is the fluid density, p is

the fluid pressure and u the kinematic viscosity. The Reynolds number R for the

flow is given by R = fll2/u and is taken to be large throughout the following.

Anticipating the structures which govern the interactions described in the fol-

lowing sections it is found convenient to define the small parameter e = R-_. As

the axes rotate with the disc, the basic steady flow is given by the Von-K£rn_n

solution

u = uB : m p= p/2n2_24p(_), (2.2)

where z-- _12_ and u, v, w satisfy the equations

II I II

+2_:0, p +_W --_ =0. (2.3c, d)

Here primes denote differentiation with respect to _ and the appropriate boundary

conditions are

fi=_=t_=0 on _=0,
(2.3e)

---*0, _----*--I as _---,oo.

We shall be concerned with perturbations to the basic flow and it is convenient

to now derive the equations governing these disturbances. If the steady solution is

perturbed by writing

U -" U B -{- l_"_ (V, V_ W), p ._ p/2_-_2 (_ 7t" p), (2.4)
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where U, V, W, P are small three-dimensional disturbances and if expressions (2.4)

are substituted into the governing equations (2.1) for the flow in the rotating frame,

we then obtain the following perturbation equations:

U OU 10V cOW
- + + --- + _ = o, (2.5a)
r -_r r O0 cOz

O 0 O e12_ O / dfi V 2"_ + r_ _r + v-_ + -_z U + eU + rW-_z - 2 (I + _)V - "7"
/

( ) (O V O W O OP 1 U 2
+ U_r +-- + U- + L(U)r O0 _z Or -R r 2 r 2 -_ '

-_ + r_r + O-_ + e'zff_ V + _V + rW-_z + 2(1 + O)U + --r

Here,

+
U V c3 W o )_+---+ y -r O0 "_z

0 0 0

lOP I (L(v)_ V 2 0U)r O0 +-R "_+r"_O-'O" '

+ _--_)W+ _nW_z

+ 0 vou_+ ---r a8 + _ w- Oz + L(W).

6 2
L-

Or 2

1 02 1 0 62

- -- + r_ 00--z+ r _ + _-V_"

(2.5b)

(2.5_)

(2.5d)

2.1 The linear vortex structure

Since we will be concerned with the effect of the vortex on a small TS wave

which, in the first instance, will be taken to be of such size so as to have an in-

finitesimal influence on the vortex, we first need to consider the structure of the

vortex when the TS wave is absent. Following the work of Gregory et al (1955), the

inviscid vortex has wavelengths scaled on the boundary layer thickness and so we

consider disturbance quantities with r and 0 dependence given by E, defined by

E- exp [e-_{ fra(r,e)dr + O,(e)}] . (2.6a)

We shall restrict our attention to examining disturbances in a neighbourhood of

some point r = rn and expand a and fl in the forms

a -" a 0 + £40q "_'- • • • , _ = flO "_ 64fll + .... (2.6b)



_2

where "702_ ao2 + _- is the effective wavenumber of the disturbance. Thus Wlo

satisfies a Rayleigh equation and we obtain stationary modes by demanding that

the point of inflexion of the effective basic flow coincides with the point at which this

flow vanishes, say at ( = _. This criterion, together with (2.9) and its appropriate

boundary conditions that Wlo _ 0 as _ ----* 0 and as _ _ oo yields the values

for ao and _o. The solution of this eigenproblem gives

= 1.46, 9o = 1.16, ao _ 4.26 (2.10)
,'_0 'rn

In this inviscid zone it is also found that the mean flow quantities U30,1730, W30,

P30 satisfy the equations
I

2U3o + W3o = O, (2.11a)

II I I WU3o - _U3o - 2fiU3o - u 30 + 2(1 + 0)173o = 0, (2.11b)

V3o tDV3o 2'aV3o -- 9'" - ' - W3o- 2(1 + _)U3o= o, (2.11c)
I

P_o= -2 (iW3ol ') (2.11d)

To determine these correction terms we need to consider explicitlyboth the

wall layer and the criticallayer structure (at _ = _). In the wall layer where we

defne the 0(1) co-ordinate ,_ by _ = e4,_, the total velocity and pressure fields

assume the forms

,.,:,-,,I<>_=o_'_+...+,,[iU_o+...l_+c._.]

+(5 2 [(U:o + ...)E2 + c.c. +rn_-S(U;o + ...)] + ..., (2.12a)

' '- [,,.:o ]v=r_(D)_=oe Z +... + _5 ( + ...)E + c.c.

w = _(_")_=oP°2 _ +...

+,5[<'(W_o+...)E +c._.] (2.12_)

+_'[<'I_:o+...I._'+_._.+_'_:o+...I]+...,
_:_"l,>,:o+.+_[_'l,':o+ ..1_+_1

(2.12d)

+_'[_'_:o+...l_'+_._.+I_:o+...>]+....



In general, the wavenumbers will be complex quantities but we shall only con-

sider neutral disturbances and so take ao,al,...,_o,j31.., to be real. The dis-

turbance structure in the z-direction is as described in Hall (1986), Gajjar (1989).

There is an inviscid layer of O(e12), (the same depth as the boundary layer), and

to satisfy no-slip conditions at the wall a viscous layer of thickness O(e 16) must be

present. In contrast to the earlier work we need to explicitly consider the mean flow

correction induced by the vortex because this correction plays a crucial role in the

interaction problems to be described in subsequent sections. We find that in the

inviscid zone the velocity and pressure fields assume the forms

= r._(e)+_ [(U,o+ E'ull +...) E + c.c.] C2.7a)
+ 62 [(U2o + ...)E 2 + c.c. + rne -12 (U3o +...)] + O(63),

v = rr_O(_)+_ [(Vlo + e4Vll + ...) Z + c.c.] (2.7b)

+ ,9 [(V_o+ ...) E_+ c.c.+ r,,_-'_ (V_o+...)] + 0(_),

w = _'_(_)+_ [(w_o+ _w,_ + ...) E + _._.] C_.7c)
+ 6_[(W_o+...) E_+ c._.+ (W_o+...)] + O(6_),

P'_- e24p(_)+ _ [(Plo + e4pll + ...) E + c.c.] (2.7d)

+ _ [(p_o+ ...)E _+ c.c.+ (P_o+ ...)] + o(_).

Here 6 << 1 is the infinitesimal vortex amplitude, the disturbance quantities

Ulo,Ull,...,/3"20, U3o etc. are functions of _ and rr, and c.c. denotes complex con-

jugate. We substitute (2.7) into (2.5) and find that the fundamental vortex terms

satisfy

i aoU_o + _°v_o + W_o = o, (2.aa)
rn ]

iUoBU1o + r,_f_'W1o = -iveoPlo, (2.8b)

iUo_V_o + _,_o'W_o= -i_°P_o, (2.sd
rr_

I

iUoBWIo = -Plo, (2.8d)

where UoB - rnao_+floO is the effective basic velocity profile. Eliminating Ulo, Vlo

and Plo from these equations yields

I II I 81
UoB W_o - "_2oW,o = Uo_W_o, (2.9)



Subst tu,ingtheseoxpa io into( 5)shows satisf the
equations given in Hall (1986) for the wall layer quantities. The solution of these

equations ultimately leads to the determination of the values of al and /_1 in

(2.6). However, this is not of primary interest here. We remark that the quantities

U_o, V:o , W:o are proportional to Z, Z and 22 respectively, and hence the boundary

conditions at _ = 0 for the mean-flow disturbance quantities U3o, V3o, W3o (given

by (2.11) above) are that

Uso : 1/'3o = Wao = 0 on _ = O. (2.13)

Clearly, we also require that the mean flow quantities decay as we leave the boundary

layer so

Ua0, Vzo ---_ 0 as _ _ co. (2.14)

However, we also need to determine the effect of the critical layer at _ = 4

on these mean flow terms. From (2.8) we see that as _ _ 4, UOB = O(_-

and singularities exist in the inviscid zone solutions Ulo and VlO. To smooth these

singularities we invoke viscous effects by considering a zone of thickness O(e 16)

surrounding _ = 4- In this region we suppose that _ = 4+ e45 where _ is O(1) and

then the velocity and pressure fields are

4 -'^ 1 s -" _2rnf_ + e rnu_z + -e2 rnu_z_ + ...] +

_ [(,-wlO+ ol, + ,'o12+...) E + c.,]

+ _2IF,,-1_(O_o+ ,'o_ +...) + ...],

(  1..2 )v= rnV_-t-e4rn v P.W-e rnvzz -1-. q-
2 e ""

[ ('--4_7"10 -'1"-Vll -[- ,4_'12 --[--...) E --1- c.¢.]

(2.15a)

(2.15b)

+ _ [(¢¢_o+ ,'¢¢_1+...) +...],
(2.15e)

p= eu4p(4)+ ... + 6 [(-Plo+ e4Pll+ es.Plu+ ...) E + e.e.]

+ 6_ [(_o + "P_I +...) + ...].
(2.15d)
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The solutions for the fundamental terms are well known. Substituting these

expansions into (2.5) and recalling the definitions of Ul0, VlO,WlO and Plo we find

that

wlo = wlo(_), PlO= Plo(_)= L_wlo(_,
"70

where we have defined Bjk = rnaj_(k)(_) + _jV(k)(_).

_.From continuity we find that Vlo --" -r-_-o_ Ulo and equation (2.5b) implies

that

d2_rlo

d$2
i(Bol_ + Blo)_1o = _o i_o _, _""_°__ _ r._o_)Wlo(_. (2.16)

To match with the solutions in the inviscid zone requires that 01o = O(1/$) as

]_1 ----* c¢ and the solution of (2.16) with this property is

U1o = r,,_o2Bol(flo_-rnaoV_)Wlo(_) exp ir

where we remark that Bol < 0.

Blo_ r s

(2.17)

Turning to the equations for the mean flow terms in (2.15) we find that I_so is

constant across the critical layer, but that 0ao satisfies

or,

d_'3o 1

d_ r,
(W;oEZlo+ _'%0_o),

0.30 = 2;-- R_(OloW;o)dt+ A, (2.1s)
rn oo

where A is some constant and an asterisk on a quantity denotes the complex conju-

gate of that quantity. It is apparent from (2.18) that, unless f_°°oo Re(UlolTV_o)dt -- O,

the mean flow term Uz0 in the inviscid zone must suffer a discontinuity across the

critical layer. We may determine this jump by multiplying (2.17) by I7¢_o, inte-

grating with respect to _ and interchanging the order of integration. The resulting

integral assumes a form of the type

(2.19)

and the behaviour of J(_) for large I_'1is well known, see Haberman (1976). After

some algebra, taking real parts and inserting in (2.18), we retrieve the necessary



discontinuity across the critical layer,

oo 2_r/3o(flofi_ -- rnaoV_)IWl°(_)l 2 (2.20a)
[030 (_.)] _o ° = 3,o2r2nBol

We also find from the governing equations that 1?3o = -rnaoOso/flo so that

[_3o(_)]°°_oo- r._Ozo[v3()]_°_ -oo (2.20b)

Moving on to higher order terms in (2.15a - d) reveals that the term dO31/d$

also suffers a non-zero jump across the critical layer which means a discontinuity

in the derivative of the mean flow term U30 (in the main boundary layer) across

= _. Repeating the procedure described above we find that

dUsl]c° = w_ [03°]-_oo (2.20c)
--_J_oo

and

[d_] °° [_ ]_ ¢220_)
d,_ ]-o0 = t_ 0 -oo

To conclude this section, we note that the presence of the vortex has induced a

mean flow correction term of size O (_2e-12) across the whole of the boundary layer.

This correction is governed by equations (2.11) with boundary conditions (2.13),

(2.14), and jump conditions hold across _ = _, which are given by

_ - %Tr_5o-] IW_o(_)l_, (2.21a,b)

-- _0 -- _

[d , ol [ V ol
= _ [U3ol_ + = _ [V3o]_ + (2.21c, d)

['-_]_- -' L d_ J__ -"

We have concentrated on the properties of the mean flow correction terms be-

cause when we consider the interaction of the vortex with the TS wave in subsequent

sections, it is found that the effect of the vortex on the TS wave is felt primarily

through this correction to the mean flow.

We solved the differential system (2.11), (2.13), (2.14), (2.21) using a fourth

order Runge-Kutta method combined with a shooting technique. Of importance
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is the sign of the discontinuity appearing in (2.21a) and it was found that this

term is negative. Clearly, the scaled size of the vortex affects the magnitude of

the discontinuities in (2.21) and in Figure (1) we illustrate the solutions for the

corrections U30,V3o and W30 when [V30(_/l_ + - -1. We find in this case that

U'30(_ -- 0) -- -0.86 × 10 -2 and V3o(_ = 0) = -0.896. We now consider the effect

of adding a small TS wave into the flow.

3. Interaction of a linear vortex with a small TS wave

The lower-branch TS waves we shall concern ourselves with here are the classi-

cal type described by a triple deck structure. The waves have O(e -9) wavenumbers

(and hence wavelengths much larger than the O(e 12) thickness of the boundary

layer) and small, O(e3), wavespeeds. The details of the triple deck may be found

in, for example, Smith (1979a), but we note here that the three decks are of thick-

nesses O(eg), O(_ 12) and O(e 15) in the direction normal to the disc. The first of

these decks is a region of potential flow, the middle deck is primarily inviscid but

rotational in character and the thin wall layer is viscous.

We shall suppose in the first instance that the size of the TS wave is extremely

small, say A(<< _) where we recall that _ is the infinitesimal vortex size. In this case,

at leading orders at least, the vortex structure described in the previous section is

unaffected by the presence of the TS wave. We have already shown that the vortex

induces a correction of size O(62R_) to the mean flow throughout the boundary

layer and we anticipate that there are essentially two mechanisms which could be

responsible for altering the neutral stability characteristics of the TS wave. Firstly,

we have the modification to the mean flow due to the vortex and, secondly, the

TS wave will interact with the vortex terms to produce further modes which in

turn interact to affect the TS and vortex instabilities. Of crucial importance for the

ensuing study is the question as to which of these processes is the more important as

far as the TS wave is concerned. We find after analysis that the former mechanism

(the mean flow change induced by the vortex) has the dominating effect and this

simplifies the following calculations.

As the vortex induces a relative change of O(_2e -12) in the size of the mean

11



flow we expect a similar effect on the neutral wavenumbers and wavespeed for the

TS wave. Anticipating this result we seek TS disturbance quantities with r and O

dependence given by F, defined by

}]F=_exp _ffi &(r,_)ar + Off(E) - fl(e)t , (3.1a)

where,

a = (ao +...) + 62,-'_(aoo +...), _ = (& + ...) + _2,-1_(_oo+ ...),

fi = ,3(_o +...3 + 62_-9(_oo+...).
(3.1b)

We see that the perturbed wavenumbers &o0,/_oo and the perturbed frequency I_oo

measure the effect of the vortex on the neutral stability of the TS wave. Of course

there are terms in the wavenumber and frequency expansions not explicitly detailed

in (3.1) and larger than the &oo,/_oo and 1_oo corrections, but these terms are

independent of the vortex properties whereas our aim here is to determine this

vortex effect. Hence we shall merely seek expressions for the values of &oo,/_oo and

_00 •

The fundamental vortex terms and the TS wave interact to produce insta-

bilities with spatial dependences of the forms EF, E-IF etc. These waves have

a structure similar to that for the crossflow vortex but with a more complicated

critical layer configuration surrounding _ = _. Indeed, here these waves have two

critical layers separated by an O(e 16) distance and each of thickness O(e16). There

is the potential for the interaction of these modes with the vortex to drive the TS

wave but, as already mentioned, this interaction is of lesser importance than the

mean flow modification due to the presence of the vortex. To simplify the analysis

below we will hence indicate the sizes of these 'mixed' modes in the various layers

but shall not need to give the full details of these modes.

Firstly, we again concentrate on the main boundary layer where z = _12 _, and

we modify expansions (2.7a - d) to consider

= r.eC_) + 6 [(V,o+...)E + _._.]+ 6_ [r.,-_CU_o +...) +...] +...
(3.2_)12 t? ]

.. _.cj ,+
= r_o(_) + _ [(V,o+ ...)E + _._.]+ _ [r.,-'_(V3o +...) +...] + ...

(3.2b)r-- ]
.. (%,F + ...)+ c.c +...,

12



w ----_12t_(_) + 6[(Wto + ...)E + c.c.] + 62 [(Wao +...) +...] + ... + A
(3.2c)

÷ ( 21 +)÷col÷,
p = e24p(_) + 6 [(P,o +...)E + c.c.] + 62 [(Pso +...) +...] +-.. + A

C3.2d)?( Ol ÷ ÷....
Here the vortex terms (Ulo,...,Plo) and mean flow corrections (U_o,...,Pzo)

satisfy the equations previously given in (2.8), (2.11). Inserting (3.2) in the govern-

ing equations (2.5) leads to the usual TS solutions

^ I ^ #

/]'o,=Aofi, I_oI=Ao0, _Vol - iA°_IoB, Pot =const., (3.3)

A A A

where Ao denotes an unknown displacement and we have defined UyB ----rnayfL+_j_.

We also find that

^ ! ^ I ^ ^ I ^ I

_r21 = AoU3o + Boil, V21 = AoV3o + BoY ,

iAo
(3.4)

rn \ / rn

where/_o is another constant and _'OOB -- r,&ooa + _ooV.

For the present we assume that these solutions are valid for _ > _; i.e. above

the critical layer. An explicit analysis of the critical layer is required to determine

how these solutions need to be modified for _ < _.

Moving into the upper deck where z = e99 and _=-O(1) say, the vortex decays

exponentially and the expansions are

u =_ [_"(_o+...) F + 6_-_ (_,+...) F+ _._.], (3.5a)

v = -r,_ + ... + A [ca (_o + .-.) F + 62e -9 (_1 + ...) F + c.c.], (3.5b)

=_1_(oo) + 6_w.oCoo)+... +
(3.5c)

[_"(_o+ ...) r + 6_-_ (_, + ...) F+ _._.],

p =e24p(oo) + A [e3 (_o +'") F + 62e -9 (_, +...) F + c.c.]. (3.5d)

Feeding these expansions into (2.5) yields a straightforward upper-deck problem,

see Smith (1979b) for example. We demand that all disturbance quantities decay

13



as ._ ----, oo and obtain matching conditions between the main deck and upper deck

solutions. In particular, we find that

A a_o .^ ^ ^ po a_o• ^ ^ #°_o)+ =o, -i3o_o vo=,(_o_o + -- - -;3060 -= --_ O_OPO, --,
r_ 0,O r_ 0_3

We need solutions of this system which match with (3.3) as _ _ c<), and this

requires

^ 2 3 2

where % = &_ + _.
achieved if

Pol- 3°__io, (3.6_)
rn_/o

Considering the next order system, matching with (3.4) is

P21 _°2 -eo =

r ^n'Y0

2 oo o- ( o oo+
rr_ ]

3o%_
Pol. (3.6b)

We need next to consider the critical layer where z = £12_jr ,16_, with ),=O(1).

The main deck solutions (3.3) & (3.4) mean that inside the critical layer our fluid

quantities develop as

_e 4^
u =rn(ft_. + u_, z +...) + g [('-'U'lO +...)E + c.c.] + 82 [rn,-'203o +...] +...

+ A (Uo, + ...)r + O(g2e-SE±lF) + 62(,-16621F Jr ...) Jr e.c. ,

(3.7a)

_u 4^
v =rn(_$ + v$, z +...) + 6 [(,-417"1o +...)E + c.c.] + 62 [rn,-'217"3o +...] +...

Jr _ [('i_01 -{-...)F Jr- O(62,-8E 4-1F) Jr 62(,-16_21F Jr-...) Jr 6.6.] ,

(3.7b)

l/) =,12(_ Jr...) -I- _ [(_Y/710+...)E + c.c.] + 62 [lYVzo+...] +...

Jr A [,3(ry_r01 -Jr-...)F Jr O(62,-3E:EIF) + '2(,-9r_21F Jr...)Jr c.c.] ,

(3.7_)

tl9 .__,24_(_) Jr... Jr 6 [(Jg10 Jr...)E Jr c.c.] -4- 62 [Pzo +...] Jr ...

Jr m [,3(/_01 Jr ...)F Jr O(,2,-3E±IF) Jr ,2(,-9_l_21F Jr...)Jr c.c.] .

(3.7d)
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The vortex terms 01o, T7"1o,U3o,... are as in expansions (2.15a - d) and fol-

low from the critical layer analysis of the previous section. On using (3.7) in the

governing equations (2.5) we find that the TS quantities are given by

A ^

0ol = Ao_g, Vox = AoV_, Wot = rn _' (3.8a)

^ 0030 -" ^ 0¢30
_r21 =Ao _ , V21 = A• D---if-'

-. (3.8b)
_¢,_= - i_o aoO3o+ Z°_o + co,_._t., P_, = P_.

rn

Matching these solutions with the main deck quantities (3.3), (3.4) (which we

supposed to be valid for _ > _) shows that, for _. _ -co, then (3.8) matches with

(3.3) & (3.4) if these latter solutions are the main deck solutions for _ < _ as well.

Hence, as far as the TS wave is concerned, the critical layer at _ = _ is a purely

passive affair and (3.3) & (3.4) continue to be the valid main deck solutions below

the critical layer• To complete the analysis for the TS wave we need to consider

the thin viscous wall layer which is of thickness O(eXs). We notice that this TS

lower deck is asymptotically much thicker than the O(e 18) sized wall layer for the

vortex. If inside the lower deck we have z = elsZ with Z = O(1), then the vortex

quantities and the mean flow correction generated by the vortex are easily found by

taking appropriate Taylor expansions about _ = 0 for the vortex terms satisfying

(2.8) and (2.11). In particular, in this wall layer the fluid quantities take the forms

3 g

(3.9_)

(3.9b)

-'" [ ] ]=_o, z + + _ ,3(_¢_o+ .•)_ + c.c. + _2L'_ + +• o. • T "'• •'*

(3.9c)
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r -b

p= _'_(o)+... +_[_"(P:o+...)z +_._.j+6"[_(o)+...l +...
1

t. d

(3.9_)

,,, ())Here Uo,Vo, Wo denote the values of 5' (_ _=o' tg'_=o' v' _=o' where
t I It

u,v,w satisfy (2.3), and similarly fire,Ore, z_m denote the values of the derivatives

of the mean flow terms U3o, 1/3o and W3o (defined by (2.11), (2.13), (2.14) & (2.21))

evaluated at _ = 0.

Substituting these expressions into (2.5) and comparing leading order terms in

the TS disturbance quantities leads to the usual lower deck problem

i(_OVJl+ _ o,) + o--_ =o,

' ? c_2Utol

i(_oZ- 5o)Uot,+ _._oW_: -iaoPot, + _5_ '

' _ _op:, 02V:li(XoZ- fio)VJ,+ r.OoWd,= -i +
rn OZ 2 '

(3.10a)

(3.10b)

(3.10c)

(3.10d)

with the necessary no-slip conditions Uota : V:I = W:I -- 0 at Z - 0 and the

requirement that the solutions should match with the main deck solutions (3.3) as

Z ---* co. Here we have denoted ,_o ^ '= aornfio + f_o0o and we solve (3.10) in the

usual way. The unknowns Uo_l, V:I are eliminated between (3.10a- e) to yield an

equation for W:I, which may be solved analytically by making the substitutions

h_flo (3.11)
_. : ;Xo. , : _._ z- _oy' ,o = Xo

With these definitions it is found that the no-slip conditions at Z = 0 together with

the matching with (3.3) can only be achieved if

rr,_t]Po, ai(t)dt = -iAoA:AoAi (rio),
o

(3.12a)

where Ai is the Airy function (see Abramowitz & Stegun 1064). Combining (3.12a)

with (3.6a) yields the leading order eigenrelation,

f_o Ai(t)dt A_,
-- (3.12b)

Ai' (Tlo) _loflg "
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It is well known that (3.12b) has solutions for real &o,/_o and _o with

7=K1-2.297, _A ^ =K2-0.4355, (3.13)
 oAo

see Smith (1979a, b). Since our TS waves are three-dimensional, (3.13) admits an

infinity of solutions. It is convenient to eliminate the radial distance rn by writing

1 ^ _ 3 ^ ! 3 ^

[2a = r-n_flo, &a = r_&o, _d = rn "13o, x/a = rr_lo, and Ad = rn ZAo.

Then if/_ = _ we obtain the solutions

(' ')
. 1.001 Uo q-.Vo ( , ,) t (3.14)

Here/z measures the angle ¢ which the TS wave makes with the radial direction

on the disc, since ¢ = tan -1 #. The solutions &d, _d and l_a are sketched in Figure

(2). The solutions (3.14) are, strictly speaking, valid only for # < #c(= 0.8284) or,

equivalently, for >,d > 0. The analysis outlined above has implicitly taken Ad > 0

although the modifications required for >,d < 0 are quite straightforward and stem

from the consideration of the appropriate branches of the many-valued functions

which arise.

We may derive equations satisfied by U:,, V:I , W:I & P:I by equating higher

order terms when (3.9) is substituted in (2.5). We obtain an equation for W:I by

eliminating U:I & V:I using a suitable combination of the r- and 0- momentum

equations and the continuity equation, and we find that

Or/4 )7 Or/' _,TA _ [r/+ (0 - 1)r/0lAi(r/), (3.15)

,, ,, _, ^ , . ^ , ^ , ,a_'fioo
where Aoo = aoor,_u o + flooVo, A,, = a0r,_fi m +/3o_m, _ = - (_oo+_,,)no' and the

substitutions (3.11) have been made. The solution of (3.15) which satisfies the no-

slip conditions at Z = 0 and which matches with solutions (3.4) in the main deck

provides a second relation between/32x and/_o. Combining with the earlier result

(3.6b) and using (3.6a), (3.12a) provides the eigenrelation for the correction terms
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&oo,/_ooand boo;-

iko ao_oo + ---

_o_ _ _o_

i_Ai(r/o) ( 2Kilo _,_oo+ Ai'(r/o) 3 + (Roo + _m)

_ i% (koo+ kin)+ 2/ko%3oo
_g _g

2ko
3K21_o

 o, iOoo)]+ 3K2fio (koo+ kin)
(3.16)

This equation admits real solutions for &oo, X}oo and (/oo only if the coefficient

of A,(r/o)/A, (r/o) vanishes. Redefining &oo = rn *_oa and /3oo = r_flood implies

that

= + = +
where

(3.17c, d)

and

l l ^ ¢ ^ l l

R, : 2K1^ (Mleo_, ^+ ,0°), , R2 : 2K1 (Otdfim q- fldO m + M2fio) (3.17e, f)
3(adU o+8400) s _ ' _ -'3(o_d%+/_dVo)_

The dependences of MI, M2, R1 & R2 upon the parameter/z are illustrated in

Figure (3). We see that depending on the chosen value of/_0Od, the neutral values

for &ooa and l_ood can be of either sign. The results (3.17) indicate how the neutral

curve for the TS wave is affected by the presence of the vortex and in the following

section we demonstrate that the effect of the vortex is largely determined by the

inclination of the TS wave (tan -1 #) to the radial direction. In addition, we now

consider the more realistic problem of allowing for a larger TS wave and indeed it

is taken to be sufficiently large so as to be nonlinear itself.
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4. The interaction of a linear vortex with a weakly nonlinear TS wave

Our aim is to increase the size of the TS wave until the mean flow correction

produced by the self-interaction of the TS wave is as large as the mean flow cor-

rection produced by the vortex. This will ensure that at this stage the TS wave

becomes nonlinear and this approach can be used to determine the stability of the

TS wave to the vortex. We still assume that the vortex is small so that _ << 1 and

then analysis of the system described in Section 3 suggests that the crucial size of

the TS wave when nonlinear effects become important is when

A =Be -3, (4.1)

where A is the unscaled amplitude of the TS wave defined in (3.2). It is straightfor-

ward to check that at this TS size the analysis presented in Section 2 to determine

the structure of the stationary vortex is not affected by interactions of the TS wave

with either itself or the vortex. Consequently, to the orders required here the results

of Section 2 & 3 for the vortex quantities continue to hold.

As is usual in the weakly nonlinear problem for a TS wave the nonlinearity

manifests itself in the lower deck, whereas the main and upper deck solutions remain

essentially linear in character. We slightly modify the method used in the previous

section by obtaining an evolution equation for the TS amplitude in the vicinity of

a chosen point rather than obtaining an equation for the neutral curve and we base

our approach on that given by Hall & Smith (1982). If we consider TS waves close

to the point (rn, 0,_) we define the O(1) coordinate rl by

r = r n + _2E-12rl, (4.2)

and allow the TS wave to evolve on the rl lengthscale. Consequently, we redefine

F given by (3.1) by

)]i &(r,e)dr + 8_(e) - (l(e)t , (4.3a)
F_=exp _-_

where,

: (3o+...) + +...),

fi :  3(fi0+...) +  2 -o(fi00 +...).
(4.3b)
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Here the vortex terms ,...,P again follow from suitable Taylor expan-

sions of the solutions to (2.8) around _ = 0. A significant difference between the

expansions (4.5) and the corresponding (3.9) for the linear TS problem is that now

the mean flow correction induced by the vortex in the lower deck is of the same

size as that produced by the interaction of the TS wave with itself. Hence the

terms UmL,..., PmL are no longer the simple Taylor expansions of the mean flows

(U30,..., P3o) generated by the vortex interacting with itself in the main bound-

ary layer and which satisfy (2.11). Since outside the boundary layer the TS wave

self-interacts to produce mean flow terms of size only 0(6_e-9), (i.e. the same size

correction as in the lower deck) we notice that equations (2.11) are still relevant,

together with boundary conditions (2.13), (2.14) and jump conditions (2.21). Hence

the leading order mean-flow terms across the whole boundary layer are unaffected

by the presence of the weakly nonlinear TS wave.

Substituting (4.5) into equations (2.5) and examining the TS quantities yields

a system which is very similar in character to that discussed by Smith (1979b). At

leading orders we find that the linear lower deck problem (3.10) applies so that

matching with the main deck solutions yields the linear eigenproblem (3.12b) as

before which has solution given by (3.14).

The mean flow terms UmL and YmL satisfy equations of the forms

t.ouot I4.6 )
rn OZ 2 = r-'--ff

To match with the mean flow produced by the self-interaction of the vortex in

the main deck requires

I I

UmL _ Urn Z, YrnL -----* V_Z, as Z --_ co,

where a_, and _ are defined below (3.9). Substituting the solutions of (3.10)

together with definitions (3.11) reveals that UmL and V,_L are given by

7^ Gt(t)dt l ol + . ,., (4.7a)
• , _ _-

o I Y rn _di -n d
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where

(4.7b)

I I -' 2 tt
UoTd Ai(r)dr F* + c.c.,

Ai' 07o) o

_l 2 tt
' _ ' Vo'Yd Ai(r)dr F* + c.c.,as(t) = i-} ad(a_%- _%)z:(t) - Ai'(,o) o

r =-- Ai' (770) '

and where £(t) satisfies _ - t£ = 1 with £(,70) = 0,/_ -----* 0 as t _ c_, so that

= dtx.
o (Ai(tt)) 2

The second harmonic terms in (4.5) satisfy the equations

" ow:,t _°v:_)+ o, (4.8_)2i(aoU2t" +
r. OZ

s "_ 4.zi(_oZ-_o)U:_+_._ow_,: -2iaoP_,+ v*o_°w*°'
oz

- + 0.4
r, OZ

P:I const.

W:I _ + --OZ 2 , (4.8b)

OV:I 02V:l (4.8(:)w to_--d-2- + az---_'

(4.8d)

We may obtain an equation for W:t by eliminating U:I and V:t from (4.8a, b, c).

We require the boundary conditions of U:I, V:I and W:I vanishing on Z =0and

matching conditions as Z ----* _ are obtained by considering the main and upper

deck equations to be satisfied by the harmonic terms. This is all straightforward

and follows from the work of Smith (1979b) so we merely state the solution for W:I

here. We obtain

Orl: -- r_ (f_ Ai(t)dt) 2 F. + Ai (7) o Ai(t)dt + BtAi(2_rl),
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where

!

[_ -,5 f,' ^ ' u°Td Ai(r)dz F* + c.c.,
Cl(t) = i -_ d(_dfio - adVo)_.(t) Ai_o) o

[ ]as(t) i-_ ^ * ' ^ ' v°_td Ai(r)dr r* + c.c.,
--- ad(adOo -- fld_o)£(t) Ai'(_o) o

Ai'Cno)

d2_ -- t£ = 1 with L(r/o) = 0,£ ---* 0 as t --_ oo, so thatand where £(t) satisfies

Ai(r)dr)ft
L(t) - Ai(t) ,

(a/(tl))_J,o
dQ.

The second harmonic terms in (4.5) satisfy the equations

t
_°V:I ) T = 0, (4.8a)2z(a0U21"^ +
r_ OZ

, t OW*o_

, + 2i_o OW_o_
r,_ O Z

a_U:' (4.Sb)
OZ 2 '

02V:1 (4.8c)
OZ 2 '

P:I = const. (4.8d)

We may obtain an equation for W:I by eliminating U:I and V:I from (4.8a, b,c).

We require the boundary conditions of U:I , V:I and W:I vanishing on Z --0and

matching conditions as Z _ c_ are obtained by considering the main and upper

deck equations to be satisfied by the harmonic terms. This is all straightforward

and follows from the work of Smith (1979b) so we merely state the solution for W:l

here. We obtain

22



where

F. = Ai(O) o 'Air ql" 2 dq,,

and

k = -2-_ 2Ai"(n)Ai(v) + Ai'(_o)A((n , _ = _'n,

constant B t is chosen so that OW:l/ar } = 0 at r} = r}0 andand the

' .4_O_o2A,_ as rl ---* oo. (4.9)

Finally, to recover the evolution equation for the amplitude parameter -4o for

the TS solutions we inspect the governing system for the terms U:x , V:I , W:x , P:x-

This set of equations take the form

r_ OZ
-El,

' t .^ t
i(_oZ - _0)U:l + rr,_oW_l + [_0P_I

i(AoZ - 12o) + r.VoW_ +
rn

P:I const.,

02U_1 - F2,
OZ 2

02V_1 - Fs,
OZU

where F1, F2 and F3 are combinations of lower order TS and mean flow terms. We

can use the standard method to obtain a governing equation for W:I which assumes

the form

+"""-- L _o +,o r,, /

1 [ o_(Wtol)"

.OW:I..
--z_(aorr_UmL

(.%oit,.+ ira) [((,7- ,lo)

20Z OZ 2 OZ 2

+ _oV.,_)+iWto,o . ]-g_(,_or,,U_L+ &V.,_)

+ °W*°'Oft

(4.11a)
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where we have used definitions (3.11) and those given below (3.15). The relevant

boundary conditions are that

on r/= r/o,

and

0 -iAo ^ iBolo (4.11b)

Or/ r.A,_ rnA,_

as r/ ------} oo.

The system (4.11) only admits a satisfactory solution if a certain solvability

criterion is met, and it is this criterion which leads to the desired evolution equation.

To obtain this condition, we need to consider the adjoint problem to (4.11), and

using the results of Ince (1956), Hall & Smith (1982), it is found that the adjoint

function for this problem is

Ai' (7?0) if'
S(rl) = Ai' (r/) ./2' (r/o) (r/), (4.12)

where the function £ is as given in the definition for G1 and G2 in (4.7). If we write

the right hand side of (4.11a) as R.(r/), multiply both sides of (4.11a) by Sir/),

integrate by parts and use (4.11b), we obtain the solvability condition

A

(,o.,) /7i[32o6°Ai(r/°) _,rn u °
rr, A 2 _rl + Zoof_o Ao = SR,dr/.

0

(4.13)

We now use the definitions of R, together with the solutions for Umr_, V, nr_ and

WmL (given in (4.7),(4.9)) and that for W:t to obtain an evolution equation for 40.

This equation takes the general form

0-4o Ta] Ao + Ts4 A0[fi, ol=, (4.14)
0r---_-= [T1/3oo + T2(loo + r_

where T1,..., 2"4 are complex functions of &d,_d, _d and r/0. All of the integrations

necessary in the determination of I'1,...,T4 were evaluated numerically. Initial

conditions at a suitably large value of r/, say r/oo, were found asymptotically and

then the defining equations for the various functions integrated using a fourth order

Runge-Kutta scheme. The integrations were all performed using the trapezium rule

and the results were checked by varying the value of r/oo and the step length used.
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Thesecheckslead us to believethat the computed values of T1 - T4 are correct to

within 0.1%.

In the above equation, each of the coefficients T1 - T4 is a function of the

orientation of the TS wave and so are functions of the parameter _. Further, T1,

T2 & T4 are all independent of vortex quantities; i.e. are functions only of the TS

wavenumbers &d, _d and 77o. Since our prime concern at the outset was to determine

the effect of the vortex upon the stability of the TS wave, the precise values of T1,

T2 and T4 are not of immediate interest, save to remark that we found that for all

admissible values of # (<: #c "_ 0.8284), Re(T4) < 0, see Figure (4).

If we write (4.14) in the modified form

- b, o + c, ol oJ 2, (4.15)
Orl

then it is clear that on the basis of linear theory the TS wave is unstable if Re(b,) >

0. However, (4.15) admits an 'equilibrium' solution with

real(b,)i oi =

so for Re(c.) < 0 a non-zero, finite, steady solution is possible. It may be easily

shown that this solution is stable and then the TS wave is said to be supercritically

stable.

The only term in (4.14) which contains vortex-induced quantities is the term

T3 which is given by the formula

2K, , .6 [ K1

A_ _o i_
3A a 1.001

1) Ai'(_o) T3

(4.16)

3A d

Here, K1 is defined by (3.13), 770 by (3.11), the nondimensionalised TS wavenumbers
^ I #

are &d, fig and tim, 9,, are the derivatives of the mean flow terms U3o, V3o induced

by the vortex when evaluated at _ = 0. We see immediately that, for a given _,

Ts is proportional to the size of the mean flow correction due to the vortex and

on examining equations (2.11), (2.13), (2.14) and the jump conditions (2.21) which
I I

determine this mean flow it is clear that fi,n and vm are, in turn, proportional to

the square of the amplitude of the crossflow vortex.
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Hence the effect of the vortex on the stability of the TS wave can be measured

directly through the coefficient T3. More particularly, we can see from (4.14) that

if Re(T3) < 0 then the TS wave is stabilised by the presence of the vortex, whereas

the opposite conclusion may be drawn for Re(T3) > 0. This function is illustrated

in Figure (5). We notice that Re(T3) may be of either sign and this is determined

solely by the value of _ (or equivalently by the orientation of the TS wave). In

particular, we find that for # > 0.297 or -0.296 < # < 0 (corresponding to TS

waves making angles between -16.50 and 0 ° or greater than about 16.5 ° with the

outward radial direction) the effect of Re(T3) is destabilising. Conversely, for TS

waves making other angles with the radial direction, the opposite effect is observed.

Crucially then, our analysis in this section suggests that on a weakly nonlinear

basis the TS waves are supercritically stable as is the case in the absence of the

vortex, but that the presence of the of vortex can be both of a stabilising or of

a destabilising effect, with the change between these states occuring for TS waves

inclined at roughly 16.5 ° with the outward radius on the disc. Some comments and

brief conclusions concerning these results will be made in Section 6.

5. The secondary instability of a fully nonlinear vortex to a TS wave

In this section we attempt to generalise the work contained in Sections 2 &

3. Thus far our concern has been only with the problem involving a linear vortex

and now we consider the effects of nonlinearity of this instability mode. We can

anticipate that the nonlinearity will affect the governing equations for the mean

flow induced by the vortex and that this in turn will alter the evolution equation

for the TS wave.

For simplicity, we shall revert to considering the problem of the interaction

involving an infinitesimally small TS wave (of size A as defined in (3.2)). In this

case, the nonlinear vortex structure is unaffected by the presence of the TS wave, at

least to the orders that we will be concerned with. We can use the results described

by Gajjar (1989), who showed that when the vortex size reaches O(R-_') (=O(eS)),

then the first effects of nonlinearity are encountered in the critical layer although

the remainder of the flow structure remains linear. It is this sized vortex which we
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consider here and we note that the mean flow correction generated by the vortex

is now O(e 4) which is larger than the vortex itself. This large mean flow correction

is necessary due to the properties of the nonlinear critical layer, see Stewartson

(1981) and Haberman (1972). Since the vortex induces an O(_ 4) correction and

following the ideas presented in Section 3, we expect the TS wave to have spatial

and temporal dependence as in the function F1, defined by

}]F1 - exp -[5i &(r,e)dr Jr O_(e) - _(e)t , (5.1a)

where,

a =&o, = +...) +  4( oo +...),
C5.1b)

= + ...) + 5( 0o + ...).

Here, as in (4.3), _00 and _0o denote the changes in the azimuthal wavenumber and

frequency of the TS wave due to the presence of the vortex. We permit the scaled

amplitude of the TS wave to evolve on an rl lengthscale, where

r = r,_ + e4rl, (5.2)

replaces the definition (4.2). The linear theory for the TS wave will allow us to

derive an evolution equation of the type C4.14) with the nonlinear term on the right

hand side of the equation absent. Indeed, following the work contained in Sections

3 & 4 it is easily shown that the stability of the TS wave is governed by an analysis

identical to that already performed and that the linear evolution equation of the

TS disturbance will satisfy an equation of the form

Or1 - Q200d +

3,,, 1^

where A is the scaled amplitude of the TS wave, /_ood --- r_'_oo, l_lOOd = r_-_i2oo

and QI,Q2 & Q3 are functions of the orientation of the TS and certain mean flow

correction parameters which follow from the analysis of the nonlinear critical layer.

Further, as in the discussion following (4.14), it is only the function Qs which

contains the mean flow velocities induced by the vortex and hence is the only term

to give information concerning the effect of the vortex on the stability of the TS

perturbation. Finally, Q3 is given by the same formula as determined T3 save that

27



the mean flow derivative terms presenton the right hand side of (4.16) should be

replaced by the equivalent terms for the (larger) vortex-induced mean flow.

To summarisethe above,we concludethat the evolution equation for the TS

wavefollows immediately oncewehavedetermined the meanflow correction due to

the nonlinear vortex. We consequentlyconsider this problem, in a manner similar

to that used in Section 2 and below wedetermine the governing equations for the
mean flow.

5.1 The nonlinear vortex

We follow Gajjar (1989) and use scalings for the vortex appropriate to the

nonlinear critical layer calculation to be addressed. In the inviscid zone, where

z = e 12f, the implied velocity and pressure fields take the forms

u = r,_(_) + _4r_m + _8(Ul0+ _ml) + ..., (5.4a)

v = _0(_) + _4_,0m+ _8(Vlo+ oral)+...,

w = eSWlo + e12_(_) + e16t_,_ + ...,

p = eSplo + ...,

(5.4b)

(5.4c)

(5.4d)

where _m, Om and _,_ are the leading order mean flow terms induced by the vortex.

We reiterate that all the mean flow terms in these expansions (terms with subscript

m) are functions of _ and rl and that the mean flow corrections in the radial

and azimuthal directions are larger than the fundamental vortex terms. We seek

solutions for these latter functions in terms of the crossflow variable x, where x is

defined so that (2.6) may be rewritten as

E -- exp(ix). (2.6')

Substituting expansions (5.4) into (2.5) and comparing suitable terms yields

that there is a solution for the vortex terms of the form

(Ulo, Vlo, Wlo, Plo) =

14(,,o_(,-,,,_)cosx, ,,ol(r,,,_)cos:_,wo,(,,_,_)sin_;,Po,(",,,_)cosx),
(5.5)
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where A is the scaled size of the vortex and (uol, VOl, WOl, pol) satisfies

J_0 G_W01 i
_XoU01 + --vol =0, --UoBUOl + rnf_ wol -----o¢0POl,

r. 0_
' J_0 t

--UoBVO1 + rnv Wol = --P01, UOBWO1 = --Pol"
rrt

(5.6)

We recall that UoB -- r,_aofi+/_oV and note that Wox satisfies the Rayleigh equation

(2.9).

Additionally, we find that the mean flow terms satisfy equations very similar

to (2.11), and in particular
d_m

2tim + - O, (5.7a)
d_

d2 V_m _ df_m
w 2_fim - fi'z_m + 2(1 + O)Vrn = 0, (5.7b)

d_ 2 d_

d2 fjrn _ df_rn _' _
w 2_m - v wm- 20 + _)_m= 0. (5.7c)

d_ 2 d_

The wall layer structure for this nonlinear vortex is analogous to that in Section

2 for the linear vortex and so we conclude that we need boundary conditions for

the induced mean flow of the form

fim=_,_=t_m=0 on f=0, _m,_,_ _0 as f---,oo. (5.8)

The most dramatic change between the work here and that given earlier is

the treatment of the critical layer zone. For now we expect a nonlinear analysis

to become appropriate in order to compute the jumps in the mean flow and its'

derivative across _ = _. As before, we suppose that the critical layer is described

by _ -- _ + e4z, z = O(1), and then the analysis of system (5.6) as _ _ _ implies

that in the critical layer the relevant expansions are

u=ro_+e4(_o+_,_-_ +e8 _+ +..., (5.9,)

= _S_o+ _,_(_, + _z) + ..., (5.9c)

p = eS_bo + el2/_ I + .... (5.9d)
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Using theseexpansionsin (2.5) revealsthat the first order unknowns tbo,/3oin

(5.9) are given by

@o= @.sinx -- AT,,POv,,_sin x, /30 = Apoo cos x, (5.10)
Bol

where Poo = Pol(() as defined by (5.6) and Byk -- rnayfi(k)(f-- ) + /gy0(k)(0. It is

clear that these solutions match on to (5.5) and (5.6) outside the critical layer.

If we define the unknowns fzjk : rnotjftk +_y_)k, then we find upon substitution

in the continuity equation (2.5a) and on using (5.10), that fioo = Coo (a constant).

This, when matching with the inviscid layer solutions surrounding the critical layer,

gives that

,LI_+ [O_0 _rn-q-" _0 _m 1 = • _0_r n

or, equivalently, that

r. o'_- _'o -'

i.e. the jump in Vm across the critical layer is proportional to the jump in urn across

that layer.

After straightforward analysis (see Gajjar (1989) for further details) it is found

that _3o satisfies the equation

2- I

afro A_I2poo . cgfJo #0 rn76v_ 1 02_0
(Bol,_+/310)--_- x + -- smx--_- = Apoo sinx + (5.11)Bo, B01 ]

where/31o - Blo + Coo.

We recall that Bol < 0 and this enables us to write (5.11) in a canonical form.

If we define

= go(Y - V*),
I 2- e

C.Y- Bxo BoxC, _o r,,'yhv_'_
Bo +_, Ko= "_----_ _ BOl ]'

A "I_ poo ,
Bo,C 3 = ,_-1, (> 0) C*= - B_,

we can reduce (5.11) to the form

(5.12)

-0. (5.13)
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We note that C, < 0 so _ _ +oo corresponds to Y ---* q:oo and the boundary

conditions to ensure a match with the inviscid zone solutions now take the forms

v" -. Y r"(_m)_ + + O (5.14)
K0 -7- '

as Y _ 4-00 where (_m) _: denotes lim_____ (Vm) respectively.

The system (5.13) & (5.14) is a classical one and the solution characteristics are

well known, see Haberman (1972), Stewartson (1981). If we define V* = 02¢/i)Y 2

then we obtain the system

03¢ 03¢ 04¢
Y oxoy 2 + sinXcoy3 - Ac c3y----_, (5.15a)

a_
_, ly 2 r_"Om'TY+lnlYlcosx+B_(x)+...,r_- as Y---++oo. (5.15b)

OY 2 Ko

We may apply the standard technique of integrating (5.15a) with respect to Y,

applying the boundary conditions (5.15b) and then integrating over a period in x.

After appealing to periodicity and a further integration with respect to Y we find

(see Haberman 1972) that, on using (5.12),

K0 f0 2_r- - 2;;;,. (B0+- Bo)sin d,:. (5.16)

The numerical solution of (5.15) is well documented (Haberman (1972), Smith

& Bodonyi (1982)) and if we define the phase shift (-6) by

= 1 f2,_ ( B+ _ Bo) sinzdz, (5.17)
?1" Jo

then the dependence of ¢ on the parameter A, is shown in Figure (6). (This figure

was plotted using data kindly supplied by Dr. J. Gajjar.) It is known that as Ac

becomes very large ¢ _ _ which corresponds to the result for a linear vortex,

whereas for small Ac, ¢ _ 0. Using the transformations (5.10, 5.12) we find that

(5.16) becomes

(5.18a)
- 2r,_%B01

[_({)]_+ _ _._o
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Theseare the mean flow jump conditions which are the counterparts of (2.21).

We can easily show that for Ac >> 1 (and hence ¢ _ _r), the size of ,_, diminishes

(from (5.10), (5.12)) and the jump criteria approach those of (2.21) for the linear

vortex.

We need to extend the above to consider the shift in the derivative of the mean

flow across the critical layer and this necessitates consideration of the next order

terms in expansions (5.9).

To derive the necessary information we can proceed to obtain a differential

equation to determine Vl. The governing equations for these unknowns are given

by Gajjar (1989) so we do not repeat them here. Instead, we merely state that we

can reduce the problem for vl to the canonical form

0a_ O3g_ 04_ KoW_ (5.19a)
Y OxOy 2 + sin x-O-_-_ - Ac Oy 4 - X(X, Y) C, '

with boundary conditions

2 0' _ [Bol(gml) _ - B,o(Om)T-]y2+O(YlnlYI),@-'-*-61 [I+rr'B°IC*( m) ]y3'r'_C'-r"_ - '

(5.19b)

as IYI oo. Here (0m)T,(Om,) _ denote ..[02(_)]_----_$_='[9'n'(¢)]¢---'_ respec-

tively, where these mean flow terms are defined in the expansions (5.4). Also X(x, Y)

is a very complicated expression involving tb (the solution of (5.15)). However, we

find upon integrating (5.19a) with respect to Y and integrating over a period in x,

that the function X(x, Y) plays no part in determining the jump in _:n across the

critical layer and, on reapplying transformations (5.12), we obtain the result

= t0 ( )ll+  0o)
Similarly, we also find that

= +. (5.20b)
___

Consequently, we now have a complete determination of the mean flow induced

by the nonlinear vortex; namely the defining equations (5.7), boundary conditions

(5.8) and jump conditions (5.18) & (5.20). This system is almost identical to that

studied in Section 2 and in practice (tim, 0m, t0m) is merely a multiple of the so-

lutions (Ua0, Va0,W3o) found earlier. This multiplication factor arises due to the
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differencein the jump conditions (5.18a) and (2.21a). This observation leadsus to

some immediate conclusionsconcerning the effect of the vortex on the stability of

an infinitesimal TS wave. For a given orientation of the TS wave, the function Q3

appearing in (5.3) is a real multiple of Tz in the evolution equation (4.14). Conse-

quently, the nonlinear vortex has a stabilising influence on the TS wave if the latter

mode makes an angle ¢ with the outward radial direction if 0 ° < ¢ < 16.5 ° or if

¢ < -16.5 °, and is destabilising otherwise.

To conclude this investigation of the weakly nonlinear vortex problem we con-

sider the size of the mean flow jump across the critical layer. We know from the

forms of (5.18a) and (4.16) that the stabilising or destabilising effect on the TS

wave is proportional to the jump across the critical layer. From the transforma-

tions (5.12), solutions (5.10) and (5.18a), it is seen that the jump in tim across the

critical layer is proportional to CA 2, which is a function of )_c. Figure (7) illustrates

this dependence, and two asymptotic cases naturally arise. Firstly, as A ----* 0 we

know that ,kc _ c_ and ¢ _ r so the jump across the critical layer becomes

small. This corresponds to returning to the linear theory of Section 2. Addition-

ally, for small ,kc (which corresponds to a large vortex), we have from (5.12) that
2

the scaled amplitude of the vortex A ,_ O(A_-_). It is also known that in this limit

_ ,kcC (1), where ¼C(1) =- 1.379 (Smith & Bodonyi 1982). Hence the mean flow
!

jump is O(,k_ -_) and so becomes large. Following the work of Gajjar (1989) it can

--_ _-), the nature of the criticalbe shown that when the scaled amplitude A O(e- _e

layer changes to a structure similar to that given by Bodonyi et al (1983) for a

strongly nonlinear critical layer and thus a modified analysis of the flow is required.

We have thus shown in this section that the effect of a nonlinear vortex on

the stability of the TS wave is very similar to that of the linear vortex considered

earlier with the main difference arising from the changed mean flow jump across

the critical layer. As previously, the nature of the influence of the vortex is largely

determined by the orientation of the TS wave. Of interest would be the extension

of our work to study the case of a strongly nonlinear vortex; the flow structure for

this problem following from the discussion of the limit Ac _ 0 given above.
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6. Conclusions

In this paper we have attempted to provide a rational asymptotic analysis of

the problem of interaction between a stationary crossflow vortex in the flow induced

by a rotating disc and a classical lower branch TS wave. The interaction has been

studied in the context of this particular basic flow because this flow is susceptible

to instabilities which occur in the boundary layer of a swept wing and this is of

relevance to the development of Laminar Flow Control wings.

At first, the asymptotic structure of a linear crossflow vortex was obtained and

we have investigated the effect of this vortex on both linear and on weakly nonlinear

TS waves. Of particular interest in our work has been the problem of the behaviour

of the TS wave in the neighbourhood of the critical layer of the vortex which is

situated inside the main part of the boundary layer of the flow. As far as the TS

wave is concerned, the critical layer plays a passive role and the leading order TS

solutions pass through the critical layer region unaffected. In addition, we have

demonstrated that the effect of the vortex on the stability of the travelling TS wave

is felt entirely through the mean flow generated by the presence of the vortex. On

analysing this phenomenon, we have found that depending on the orientation of

the TS wave, the vortex can have either a stabilising or a destabilising effect- in

particular the vortex stabilises the TS wave if the latter makes an angle between 0 °

and 16.5 ° or less than -16.5 ° with the outward radial direction. This work has an

obvious practical implication, namely that it is possible that when these two types

of instability are present in a three-dimensional flow that the crossflow vortex can

destabilise the TS wave.

The above interaction structure has also been extended to the study of a non-

linear vortex. The findings described in the last paragraph are largely unaltered

by this change, at least as far as the effect of the vortex on the stability of an

infinitesimal TS wave is concerned. The analysis for the linear vortex was easily

adapted to study the implications for the stability of a weakly nonlinear TS wave in

the presence of a linear vortex, although the work for the case of a nonlinear vortex

is not so readily extendable for the problem with this larger TS amplitude. This

extension is currently being considered by the authors.

Further, the study of Section 5 and that of Gajjar (lg80) points to an even

larger crossflow vortex which may be described by asymptotic means. This again
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provides scope for future work.

Finally, we should remark that here we have considered the problem of inter-

action between a pair of specific crossflow and TS instabilities. In realistic flows it

is likely that other modes could be present and it is desirable to be able to classify

the relative importance of other possible interaction mechanisms. In particular,

we are looking at the problem of interaction between TS waves and the stationary

vortex mode described by Hall (1986) which is characterised by having zero wall

shear stress for the effective crossfiow velocity profile. In addition, we note that our

approach developed here can only deal with interactions at asymptotically large

Reynolds numbers and the importance of the crossflow vortex on the stability of

the TS wave at lower Reynolds numbers can only be resolved by pursuing extensive

numerical calculations.
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Figure Captions

Fig (1). The dependenceof the mean flow terms Uao, V3o and W3o (defined by

(2.7) and satisfying (2.11), (2.13), (2.14), (2.21)) upon the boundary layer coordi-

nate _.

Fig (2). The neutral non-dimensional wavenumbers &d,/_d and frequency I2d for

the TS wave defined by (3.1) expressed as functions of the waveangle ¢ = tan -1/z.

Fig (3). The functions (i) M1,M2 and (ii) Rx,R2 which determine the correc-

tions to the neutral wavenumbers and frequency of the TS wave due to the presence

of the vortex.

Fig (4). The real part of the coefficient 7"4 of the nonlinear term in the TS

evolution equation (4.14) expressed as a function of #.

Fig (5). The real part of the coefficient 7"3 in the evolution equation (4.14)

which determines the effect of the crossflow vortex on the stability of the TS wave.

Fig (6). The function q_= ¢()_c) given by (5.15) and (5.17).

Fig (7). Dependence of the vortex quantity CA 2 upon the parameter )_c. Here

is defined by (5.15), (5.17) and A is the scaled vortex amplitude size.
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